
Abstract—A cloud storage system, provides long-term storage services over the Internet. A cloud storage system is considered as a

large scale distributed storage system that consists of many independent storage servers.Storing data in a third party’s cloud system

causes serious concern over data confidentiality. General schemes protect data confidentiality, but limits the functionality of the

storage system because a few operations are supported over the encrypted data. Constructing a secure storage system that

supports multiple functions is challenging when the storage system is distributed and has no central authority. We propose a proxy re-

encryption scheme and integrate it with a decentralized erasure code such that a secure distributed storage system is formulated.

The distributed storage system not only supports secure and robust data storage and retrieval, but also lets a user forward his data in

the storage servers to another user without retrieving the data back to the sender’s location . The basic technical contribution is that

the proxy re-encryption scheme supports encoding operations over encrypted messages as well as forwarding operations over

encoded and encrypted messages. Our method fully integrates encrypting, encoding, and forwarding. We analyze and suggest

suitable parameters for the number of copies of a message dispatched to storage servers and the number of storage servers queried

by a key server. These parameters allow more flexible adjustment between the number of storage servers and robustness,

thus increasing the efficiency in storing the data with confidentiality and forwarding the data to another user by providing security.

Index Terms—Decentralized erasure code, proxy re-encryption, threshold cryptography, secure storage system.

1 INTRODUCTION

As high-speed networks and ubiquitous Internet access
become available in recent years, many services are-
provided on the Internet such that users can use them from
anywhere at any time. For example, the email service is
probably the most popular one. Cloud computing is a
concept that treats the resources on the Internet as a unified
entity, a cloud. Users just use services without being
concerned about how computation is done and storage
is managed. In this paper, we focus on designing a
cloud storage system for robustness, confidentiality, and
functionality. A cloud storage system is considered as a
large-scale distributed storage system that consists of
many independent storage servers.
Data robustness is a major requirement for storage
systems. There have been many proposals of storing data
over storage servers [1], [2], [3], [4], [5]. One way to provide
data robustness is to replicate a message such that each
storage server stores a copy of the message. It is very robust
because the message can be retrieved as long as one storage
server survives. Another way is to encode a message of k
symbols into a codeword of n symbols by erasure coding. To
store a message, each of its codeword symbols is stored in a
different storage server. A storage server failure corresponds
to an erasure error of the codeword symbol. As long as the
number of failure servers is under the tolerance threshold of
the erasure code, the message can be recovered from the
codeword symbols stored in the available storage servers by
the decoding process. This provides a tradeoff between the
storage size and the tolerance threshold of failure servers. A
decentralized erasure code is an erasure code that independ-
ently computes each codeword symbol for a message. Thus,

the encoding process for a message can be split into n parallel
tasks of generating codeword symbols. A decentralized
erasure code is suitable for use in a distributed storage
system. After the message symbols are sent to storage
servers, each storage server independently computes a
codeword symbol for the received message symbols and stores
it. This finishes the encoding and storing process. The recovery
process is the same.

Storing data in a third party’s cloud system causes serious
concern on data confidentiality. In order to provide strong
confidentiality for messages in storage servers, a user can
encrypt messages by a cryptographic method before applying
an erasure code method to encode and store messages. When
he wants to use a message, he needs to retrieve the codeword
symbols from storage servers, decode them, and then decrypt
them by using cryptographic keys. There are three problems
in the above straightforward integration of encryption and
encoding. First, the user has to do most computation and
the communication traffic between the user and storage servers
is high. Second, the user has to manage his cryptographic keys. If
the user’s device of storing the keys is lost or compromised,
the security is broken. Finally, besides data storing and
retrieving, it is hard for storage servers to directly support
other functions. For example, storage servers cannot directly
forward a user’s messages to another one. The owner of mes-
sages has to retrieve, decode, decrypt and then forward them
to another user.

In this paper, we address the problem of forwarding data to
another user by storage servers directly under the
command of the data owner. We consider the system model
that consists of distributed storage servers and key servers.

K.Srinivasa Murthy1, B.Ramesh Babu2

1PG Scholar, PBR Visvodaya Institute of Technology and Science,sreenu_n_you@yahoo.com
2Asst.Professor, PBR Visvodaya Institute of Technology and Science, brameshbabub07@gmail.com2Assistant Professor, Information Technology, Karpaga Vinayaga College of Engineering & Technology,

Kanchipuram Dt, Tamil Nadu, India

3Assistant Professor, Computer Science & Engineering, KCG College of Technology, Chennai, Tamil
Nadu, India

K.SRINIVASA MURTHY (M.TECH student),PBR VITS,KAVALI,sreenukora@gmail.com

B.RAMESH BABU (Asst.prof),PBR VITS ,KAVALI,brameshbabub07@gmail.com

A Secure Erasure CBCS System with Data Forwarding Technique

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES
&

MANAGEMENT

[Murthy et al., 3(2),April-June, 2013] ISSN: 2277-5528

Int. J. of Engg. Sci. & Mgmt. (IJESM), Vol. 3, Issue 2: April-June: 2013,

 Since storing cryptographic keys in a single device is risky,
a user distributes his cryptographic key to key servers. These
key servers are highly protected by security mechanisms.
With this consideration, we propose a new threshold proxy
re-encryption scheme and integrate it with a secure decentralized
code to form a secure distributed storage system. The
encryption scheme supports encoding operations over
encrypted messages and forwarding operations over encryp-
ted and encoded messages. The tight integration of encoding,
encryption, and forwarding makes the storage system effi-
ciently meet the requirements of data robustness, data
confidentiality, and data forwarding. Accomplishing
the integration with consideration of a distributed structure
is challenging. Our system meets the requirements that
storage servers independently perform encoding and
re-encryption and key servers independently perform
partial decryption. Moreover, we consider the system
in a more general setting than previous works.
Our contributions. Assume that there are n distributed

storage servers and m key servers in the cloud storage
system. A message is divided into k blocks and represented
as a vector of k symbols. Our contributions are as follows:

1. We construct a secure cloud storage system that
supports the function of secure data forwarding
by using a threshold proxy re-encryption scheme.
The encryption scheme supports decentralized erasure
codesover encrypted messages and forwarding op-
erations over encrypted and encoded messages. Our
system is highly distributed where storage servers in-
dependently encode and forward messages and key
servers independently perform partial decryption.

2. Our storage system allows the number of
storage servers be much greater than the number of
blocks of a message. In practical systems, the
number of storage servers is much more than k.
Nevertheless, the storage size in each storage
server does not increase because each storage serv-
er stores an encoded result (a codeword symbol),
which is a combination of encrypted message
symbols.

2 RELATED WORKS

We briefly review distributed storage systems, proxy
re-encryption schemes, and integrity checking mechanisms.

2.1 Distributed Storage Systems
At the early years, the Network-Attached Storage (NAS)
[7] and the Network File System (NFS) [8]
provide extra storage devices over the network such
that a user can access the storage devices via
network connection. Afterward, many improvements
on scalability, robustness, efficiency, and security were
proposed [1], [2], [9].A decentralized architecture for
storage systems offers good scalability. because a
storage server can join or leave without control of a
central authority.

To provide robustness against server failures, a
simple method is to make replicas of each message and
store them in different servers. However, this method is
expensive as z replicas result in z times of expansion.
One way to reduce the expansion rate is to use erasure

codes to encode messages [10], [11], [12], [13], [5]. A message
is encoded as a codeword, which is a vector of symbols, and
each storage server stores a codeword symbol. To store a
message of k blocks, each storage server linearly combines
the blocks with randomly chosen coefficients and stores
the codeword symbol and coefficients. To retrieve the
message, a user queries k storage servers for the stored
codeword symbols and coefficients and solves the linear
system. The larger v is, the communication cost is higher
and the successful retrieval probability is higher. The sys-
tem has a light data confidentiality because an attacker can
compromise k storage servers to get the message.

2.2 Proxy Re-Encryption Schemes

Proxy re-encryption schemes are proposed byMambo and
Okamoto [14] and Blaze et al. [15]. In a proxy re-encryption
scheme, a proxy server can transfer a ciphertext under a
public key PKA to a new one under another public key PKB
by using the re-encryption key RKA!B. The server does not
know the plaintext during transformation. Ateniese et al.
[16] proposed some proxy re-encryption schemes and
applied them to the sharing function of secure storage
systems. In their work, messages are first encrypted by the
owner and then stored in a storage server.

When a user wants to share his messages, he sends a re-en-
cryption key to the storage server. The storage server
re-encrypts the encrypted messages for the authorized
user. Thus, their system has data confidentiality and
supports the data forwarding function. Our work further
integrates encryption, re-encryption, and encoding such
that storage robustness is strengthened.A user can decide
which type of messages and with whom he wants to
share in this kind of proxy re-encryption schemes.

Fig. 1. System Architecture

[Murthy et al., 3(2),April-June, 2013] ISSN: 2277-5528

Int. J. of Engg. Sci. & Mgmt. (IJESM), Vol. 3, Issue 2: April-June: 2013,

3. SYSTEM MODEL

As shown in Fig.1, our system model consists of users, n
storage servers SS1; SS2; . . . ; SSn, and m key servers
KS1;KS2; . . . ; KSm. Storage servers provide storage services
and key servers provide key management services. They
work independently. Our distributed storage system consists
of four phases: system setup, data storage, data forwarding, and
data retrieval. These four phases are described as follows.

 In the System setup phase, the system manager chooses
system parameters and publishes them. Each user A is
assigned a public-secret key pair PKA- SKA. User A
distributes his secret key SKA to key servers such that each key
server KSi holds a key share SKA;i, 1 < i < m. The key is
shared with a threshold t.

In the data storage phase, user A encrypts his message M
and dispatches it to storage servers. A message M is
decomposed into k blocks m1;m2; . . . ;mk and has an
identifier ID. User A encrypts each block mi into a ciphertext
Ci and sends it to v randomly chosen storage servers. Upon
receiving ciphertexts from a user, each storage server
linearly combines them with randomly chosen coefficients
into a codeword symbol and stores it. Note that a storage
server may receive less than k message blocks and we
assume that all storage servers know the value k in advance.

In the data forwarding phase, user A forwards his encrypted
message with an identifier ID stored in storage servers to user B
such thatB can decrypt the forwardedmessage by his secret key.
To do so, A uses his secret key SKA and B’s public key
PKB to compute a re-encryption key RKIDA-->B and
then sends RKID A-->B to all storage servers. Each storage
server uses the re-encryption key to re-encrypt its codeword
symbol for later retrieval requests by B. The re-encrypted
codeword symbol is the combination of ciphertexts under B’s
public key.

In the data retrieval phase, user A requests to retrieve a
message from storage servers. The message is either stored
by him or forwarded to him. User A sends a retrieval request to
key servers. Upon receiving the retrieval request and ex-
ecuting a proper authentication process with user A, each key
server KSi requests u randomly chosen storage servers to get
codeword symbols and does partial decryption on the received
codeword symbols by using the key share SKA;i.
Finally, user A combines the partially decrypted codeword
symbols to obtain the original message M.

System recovering. When a storage server fails, a new one
is added. The new storage server queries k available storage
servers, linearly combines the received codeword symbols as a
new one and stores it. The system is then recovered.

3.1 Problem Solution

 A straightforward solution to supporting the data forwarding
function in a distributed storage system is as follows:when the
owner A wants to forward a message to user B, he downloads
the encrypted message and decrypts it by using his secret key.
He then encrypts the message by using B’s public key and
uploads the new ciphertext. When B wants to retrieve the
forwarded message from A, he downloads the ciphertext and
decrypts it by his secret key. The whole data forwarding
process needs three communication rounds for A’s
downloading and uploading and B’s downloading. The
communication cost is linear in the length of the forwar-
ded message. The computation cost is the decryption and
encryption for the owner A, and the decryption for user B.

 Proxy re-encryption schemes can significantly decrease
communication and computation cost of the owner. In a proxy
re-encryption scheme, the owner sends a re-encryption key to
storage servers such that storage servers perform the re-en-
cryption operation for him. Thus, the communication cost of
the owner is independent of the length of forwarded message
and the computation cost of re-encryption is taken care of by
storage servers. Proxy re-encryption schemes significantly
reduce the overhead of the data forwarding function in a
secure storage system.

4 CONSTRUCTION OF SECURE CLOUD STORAGE

SYSTEMS

Our approach. We use a threshold proxy re-encryption scheme
with multiplicative homomorphic property. An encryption
scheme is multiplicative homomorphic if it supports a group
operation � on encrypted plaintexts without decryption

DðSK;EðPK;m1Þ �EðPK;m2ÞÞ ¼ m1 �m2;
where E is the encryption function, D is the decryption
function, and PK-SK is a pair of public key and secret key.
Given two coefficients g1 and g2, two message symbols m1
and m2 can be encoded to a codeword symbolm

g1

1 m
g2

2 in
the encrypted form

C ¼ EðPK;m1Þg1 � EðPK;m2Þg2 ¼ EðPK;mg1

1 �m
g2

2 Þ:

Thus, a multiplicative homomorphic encryption scheme
supports the encoding operation over encrypted messages.We
then convert a proxy re-encryption scheme with multiplic-
ative homomorphic property into a threshold version. A secret
key is shared to key servers with a threshold value t via the
Shamir secret sharing scheme [26], where t k.

In our system, to decrypt for a set of k message symbols, each
key server independently queries 2 storage servers and
partially decrypts two encrypted codeword symbols. As
long as t key servers are available, k codeword symbols are
obtained from the partially decrypted ciphertexts.

[Murthy et al., 3(2),April-June, 2013] ISSN: 2277-5528

Int. J. of Engg. Sci. & Mgmt. (IJESM), Vol. 3, Issue 2: April-June: 2013,

4.1 A Secure Cloud Storage System with Secure
Forwarding

As described in Section 3, there are four phases of our
storage system.

System setup. The algorithm SetUpð1� Þ generates the
system parameters�. A user uses KeyGenð�Þ to generate his
public and secret key pair and ShareKeyGenð�Þ to share his
secret key to a set of m key servers with a threshold t, where
k�t�m. The user locally stores the third component of his
secret key.

. SetUp(1�) .,

. KeyGen(�) .,

. ShareKeyGen(SKA, t, m).

Data storage. When user A wants to store a message of k
blocks m1;m2; . . . ;mk with the identifier ID, he computes
the identity token � ¼ hfða3;IDÞ and performs the encryption
algorithm Encð�Þ on � and k blocks to get k original
ciphertexts C1; C2; . . . ; Ck.

. Enc(PKA; � ;m1;m2; . . . ;mk).

. Encode(C1; C2; . . . ; Ck).

Data forwarding. User A wants to forward a message to
another user B. He needs the first component a1 of his
secret key. If A does not possess a1, he queries key servers
for key shares. When at least t key servers respond, A
recovers the first component a1 of the secret key SKA via the

. KeyRecoverð�Þ

. ReKeyGenð�Þ

. ReEncð�Þ

Data retrieval. There are two cases for the data retrieval
phase. The first case is that a user A retrieves his own
message. When user A wants to retrieve the message with
the identifier ID, he informs all key servers with the identity
token� . A key server first retrieves original codeword
symbols from u randomly chosen storage servers and then
performs partial decryption using

. ShareDecð�Þ

. Combine(.)

4.2 Analysis

We analyze storage and computation complexities, cor-
rectness, and security of our cloud storage system in this sec-
tion. Let the bit-length of an element in the group G1be l1 and
G2 be l2.

Storage cost. To store a message of k blocks, a storage
server SSj stores a codeword symbol and the coefficient
vector, They are total of ð1 þ 2l1þ l2þ kl3Þ bits.
The average cost for a message bit stored in a storage server is

ð1þ 2l1 þ l2 þ kl3Þ=kl2 bits, which is dominated by l3=l2 for a
sufficiently large k. In practice, small coefficients, i.e.,
l3
 l2, reduce the storage cost in each storage server.

Computation cost. We measure the computation cost by the
number of pairing operations, modular exponentiations in G1

and G2 modular multiplications in G1and G2, and arithmetic
operations over GF ðpÞ. These operations are denoted
as Pairing, Exp1, Exp2, Mult1, Mult2, and Fp, respect-
ively.

4.3 Experimental Results
The analysis of experimental results shows that our ap-
proach is practical in data storing and forwarding in distributed
environment cloud storage. The empirical results gives a quick
view w.r.t Security ,Cost and Time in existing and proposed
systems.

5 CONCLUSION

 In this paper, we consider a cloud storage system consists of
storage servers and key servers.We integrate a newly proposed
threshold proxy re-encryption scheme and erasure codes over
exponents. The threshold proxy reencryption scheme supports
encoding, forwarding and partial decryptions in a distributed
way. To decrypt a message of k blocks that are encrypted and
encoded to n codeword symbols,each key server only has to
partially decrypt two codeword symbols in our system.
By using the threshold proxy re-encryption scheme,we present
a secure cloud storage system that provides secure data storage
and secure data forwarding functionality in a decentralized
structure. Moreover, each storage server independently
performs encoding and re-encryption and each key server
independently performs partial decryption.

[Murthy et al., 3(2),April-June, 2013] ISSN: 2277-5528

Int. J. of Engg. Sci. & Mgmt. (IJESM), Vol. 3, Issue 2: April-June: 2013,

REFERENCES

[1] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R.
Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao, “Oceanstore: An Architecture for Global-Scale Persistent
Storage,” Proc. Ninth Int’l Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 190-201, 2000.

[2] P. Druschel and A. Rowstron, “PAST: A Large-Scale, Persistent
Peer-to-Peer Storage Utility,” Proc. Eighth Workshop Hot Topics in
Operating System (HotOS VIII), pp. 75-80, 2001.

[3] A. Adya, W.J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J.R.
Douceur, J. Howell, J.R. Lorch, M. Theimer, and R. Wattenhofer,
“Farsite: Federated, Available, and Reliable Storage for an Incom-
pletely Trusted Environment,” Proc. Fifth Symp. Operating System
Design and Implementation (OSDI), pp. 1-14, 2002.

[4] A. Haeberlen, A. Mislove, and P. Druschel, “Glacier: Highly Dur-
able, Decentralized Storage Despite Massive Correlated Failures,”
Proc. Second Symp. Networked Systems Design and Implementation
(NSDI), pp. 143-158, 2005.

[5] Z. Wilcox-O’Hearn and B. Warner, “Tahoe: The Least-Authority
Filesystem,” Proc. Fourth ACM Int’l Workshop Storage Security and
Survivability (StorageSS), pp. 21-26, 2008.

[6] H.-Y. Lin and W.-G. Tzeng, “A Secure Decentralized Erasure Code
for Distributed Network Storage,” IEEE Trans. Parallel and Distrib-
uted Systems, vol. 21, no. 11, pp. 1586-1594, Nov. 2010.

[7] D.R. Brownbridge, L.F. Marshall, and B. Randell, “The Newcastle
Connection or Unixes of the World Unite!,” Software Practice and
Experience, vol. 12, no. 12, pp. 1147-1162, 1982.

[8] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon,
“Design and Implementation of the Sun Network Filesystem,”
Proc. USENIX Assoc. Conf., 1985.

[9] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu,
“Plutus: Scalable Secure File Sharing on Untrusted Storage,” Proc.
Second USENIX Conf. File and Storage Technologies (FAST), pp.
29-42, 2003.

[10] S.C. Rhea, P.R. Eaton, D. Geels, H. Weatherspoon, B.Y. Zhao, and
J. Kubiatowicz, “Pond: The Oceanstore Prototype,” Proc. Second
USENIX Conf. File and Storage Technologies (FAST), pp. 1-14, 2003.

[11] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G.M. Voelker,
“Total Recall: System Support for Automated Availability Man-
agement,” Proc. First Symp. Networked Systems Design and Imple-
mentation (NSDI), pp. 337-350, 2004.

[12] A.G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Ubiquitous
Access to Distributed Data in Large-Scale Sensor Networks through
Decentralized Erasure Codes,” Proc. Fourth Int’l Symp. Information
Processing in Sensor Networks (IPSN), pp. 111-117, 2005.

[13] A.G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Decentralized
Erasure Codes for Distributed Networked Storage,” IEEE Trans.
Information Theory, vol. 52, no. 6 pp. 2809-2816, June 2006.

[14] M. Mambo and E. Okamoto, “Proxy Cryptosystems: Delegation of
the Power to Decrypt Ciphertexts,” IEICE Trans. Fundamentals of
Electronics, Comm. and Computer Sciences, vol. E80-A, no. 1, pp.
54-63, 1997.

[15] M. Blaze, G. Bleumer, and M. Strauss, “Divertible Protocols and
Atomic Proxy Cryptography,” Proc. Int’l Conf. Theory and Applica-
tion of Cryptographic Techniques (EUROCRYPT), pp. 127-144, 1998.

[16] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved
Proxy Re-Encryption Schemes with Applications to Secure
Distributed Storage,” ACM Trans. Information and System Security,
vol. 9, no. 1, pp. 1-30, 2006.

[17] Q. Tang, “Type-Based Proxy Re-Encryption and Its Construction,”
Proc. Ninth Int’l Conf. Cryptology in India: Progress in Cryptology
(INDOCRYPT), pp. 130-144, 2008.

[18] G. Ateniese, K. Benson, and S. Hohenberger, “Key-Private Proxy
Re-Encryption,” Proc. Topics in Cryptology (CT-RSA), pp. 279-294,
2009.

[19] J. Shao and Z. Cao, “CCA-Secure Proxy Re-Encryption without
Pairings,” Proc. 12th Int’l Conf. Practice and Theory in Public Key
Cryptography (PKC), pp. 357-376, 2009.

[20] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson, and D. Song, “Provable Data Possession at Untrusted
Stores,” Proc. 14th ACM Conf. Computer and Comm. Security (CCS),
pp. 598-609, 2007.

[Murthy et al., 3(2),April-June, 2013] ISSN: 2277-5528

Int. J. of Engg. Sci. & Mgmt. (IJESM), Vol. 3, Issue 2: April-June: 2013,

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

